Predicting Generalization of
Deep Models

Shreyas and Vihari



Classic theory

Generalization gap is bounded by some complexity measure of the fitted function

with high probability.
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Generalization gap:

test error - empirical train error
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Training data size

+ tiny term

C: Complexity measure
- A function of trained model and training
data



Deep nets and classic theory

Classic complexity measures cannot explain why deep models generalize.

Empirically explore complexity measures based on function and training data
properties that explain the generalization gap in practice.

C -> empirical_predictor(train_data, trained_model)
Ultility:

e Motivates further theory.
e Improves ML application safety.



Classic evaluation

e Traditionally, performance evaluated on a held-out test split
of train data, called in-distribution (ID) evaluation.

e However, in-distribution test distribution need not represent
real-world test distributions.

e Moreover, in-distribution performance is often inflated. l.e.
average performance in practice is often lower than
in-domain.

o Ex: Dependence on metal token for predicting pneumonia



OQOD Evaluation: Beyond ID evaluation

We need an alternate evaluation:

e that informs how well a model performs in the real-world.
e that measures “true” progress, i.e. by not incentivising predictions due to
incidental features.

But how can we possibly quantify performance of a model in the arbitrary, creative
and complex real-world? =



Outline

- Part 1: Complexity measures for in-distribution generalization gap.

- Part 2: Complexity measures for out-of-distribution generalization gap.
- Part 3: Predicting accuracy on any dataset without labelled data.

- Takeaways and future work.



Part |I: In-domain Generalization



This part...

We will look at empirical measures that predict real-world performance given the
fitted function and in-domain distribution.

Fitted function \
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Accuracy predictor ID generalization gap

Training data /




Survey and overview

Published as a conference paper at ICLR 2020

FANTASTIC GENERALIZATION MEASURES
AND WHERE TO FIND THEM

Yiding Jiang*, Behnam Neyshabur*, Hossein Mobahi, Dilip Krishnan, Samy Bengio
Google Research

{ydjiang, neyshabur, hmobahi, dilipkay,bengio}@google.com

Summarizes and compares generalization measures existing to date on Image classification
datasets: CIFAR-10, SVHN, using ConvNet architecture.



Setup

Trained models are generated by setting 7 common hyperparameters (batch size,
dropout, Ir, etc.) to 3 values (37 = 2187 models).

0 .= (91,...,

O

n'" Hyperparam
j{

where ©® := 0 X --- X O,

Let u(0) be the proposed complexity measure.

Let g(B) denote the true generalization gap computed using held-out test set.
Rank models (8", 8@, ..., 8™) using p or g and the ranked lists should be
consistent for a good complexity measure p.
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Setup (continued) ...
Metric: Granulated Kendall’s coefficient W Ranking distance

High if rank assigned by
/ mu and g align.
> > o Y T Ugeo,{(1(6),9(6))})

“ 01€0 0;—1€0;-10,11€60;41 On€On

P =

Per hyperparameter ranking comparison to incentivise measures that can predict
the effect of any hyperparameter.
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Metric explained

Model Index

Dropout

0.3
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Learning
rate
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Avoids rewarding weaker measures.
For eg. if measure captures depth of
network well, then can rank models
overall well without capturing effect of
other choices.

0%
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Baseline complexity measures

weight

Oracle: True ranking of models + noise
Canonical: Simple ranking rules based on
on common wisdom

Starting observation: existing vc dimension

batch  dropout learning  depth  optimizer width
size rate decay overall T \\j
ve dim 19 0.000 0.000 0.000 -0.909 0.000 0.000 -0.171 -0.251 -0.154
# params 20 0.000 0.000 0.000 -0.909 0.000 0.000  -0.171 -0.175 -0.154
5 1/v(22) 0312 -0593 0234 0758\ 0223  -0211 0.125 0.124 0.121
= entropy 23 0.346 -0.529 0:251 0.632 0.220 -0.157  0.104 0.148 0.124
© | cross-entropy 21 0.440 -0.402 0.140 0.390 0.149 0.232 0.080 0.149 0.147
oracle 0.02 0.380 0.657 0.536 0.717 0.374 0.388 0.360 0.714 0.487
L oracle 0.05 0.172 0.375 0.305 0.384 0.165 0.184 0.204 0.438 0.256
( canonical ordering  0.652 0.969 0.733 0.909 -0.055 0.735 0.171 N/A N/A
N ¥ ]

based complexity measures do not the explain
generalization gap.




Norm-based measures

batch  dropout learning  depth  optimizer =~ Weight .44 overall N
size rate decay T

Frob distance #0 -0.317  -0.833 -0.718 0.526 -0.214 -0.669  -0.166 -0.263 -0.341
= Spectral orig §6 -0.262  -0.762 -0.665 -0.908 -0.131 -0.073  -0.240 -0.537 -0.434
8 Parameter norm\42  0.236 -0.516 0.174 0.330 0.187 0.124  -0.170 0.073 0.052
Path norm 44 0.252 0.270 0.049 0.934 0.153 0.338 0.178 0.373 0.311
Fisher-Rao 45 0.396 0.147 0.240 -0.553 0.120 0.551 0.177 0.078 0.154
oracle 0.02 | 0.380 0.657 0.536 0.717 0.374 0.388 0.360 0.714 / 0.487

|

Frob distance: distance from initialization
Spectral: measure based on spectral norm of parameters
(both fail to predict)

Distance from initialization does not matter. Param norm better

Pathnorm: a simple scale invariant complexity measure. (element-wise) square all parameters
and accumulate sum of outputs (k=number of classes/outputs) for all-ones input.

Mpath-norm — Z?l,'c:l fw2 (1)[7’]




Flathess-based measures

PAC-Bayesian measures
If the prior distribution is P and posterior (after training) is Q on w.
Then the expected generalization gap is bounded as below (McAllester, D. A. ‘99)

- KL(Q||P)+log(=)
Ew~qL(fuw)] < EuwqL(fw)] + \/ 2om 1) wpl—2o
when P = N(0,0%I),Q = N (w,0°I),then (Neyshabur et.al. 2017)

Mpac-bayes — H H2 +lo g( )

o set to largest value s.t.

EUNN(O,O'2I) .lA'J(fw_FU) S O].
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Flathness-based measures (continued...)

Bound based on worst-case flatness (Keskar et.al. 2016).
The magnitude of W (number of parameters) length g.v. of variance o2 is

a=o0, /210g(27“’) wp.1—4/2

EuNJV(u,a?I) [L(fw—i—u)] < max i(fw—l—u) +

 |u|<fa

m— 1

|3 log(2w) m
Msharpness — 24a2 + log( 5 )

where a is to largest number such that maxXiy, |<a L(fw_|_u) < 0.1
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Sharpness-based measures (continued...)
batch  dropout learning  depth  optimizer ~Weight .44 overall N/
size rate decay T
sharpness-orig 52 0.542 -0.359 0.716 0.816 0.297 0.591 0.185 0.400 0.398
= pacbayes-orig 49 0.526 -0.076 0.705 0.546 0.341 0.564  -0.086 0.293 0.360
8 1 /a/ sharpness mag 62 0.570 0.148 0.762 0.824 0.297 0.741 0.269 0.484 0.516
1/0/ pacbayes mag 61 0.490 -0.215 0.505 0.896 0.186 0.147 0.195 0.365 0.315
oracle 0.02 0.380 0.657 0.536 0.717 0.374 0.388 0.360 0.714 0.487

Sharpness magnitude « is the most informative of generalization gap. (which is as good as it gets on
these datasets when compared to oracle 0.02)



A surprisingly simple baseline

Published as a conference paper at ICLR 2022

ON PREDICTING GENERALIZATION USING GANS

Yi Zhang'?, Arushi Gupta', Nikunj Saunshi', and Sanjeev Arora!

IPrinceton University, Computer Science Department
{y.zhang, arushig, nsaunshi, arora}@cs.princeton.edu
2Microsoft Research

Use (conditional-)GANs to generate test data, and use it to predict generalization gap.
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Algorithm

Algorithm 1 Predicting test performance

Require: target classifier f, training set Siain, GAN training algorithm A
1. Train a conditional GAN model using Strain:

G, D = A(Strain) Where G, D are the generator and discriminator networks.
2. Generate a synthetic dataset by sampling from the generator G:
Ssyn = {(531, 1971), ceey (iNa gN)} where jia gl = G(zla gi)

The z;’s are drawn i.i.d. from G’s default input distribution. N and y;’ are chosen so as to match
statistics of the training set.

Output: the synthetic accuracy g(f) := ﬁ Z(i §)ESepn 1 [f(Z) = gy] as the prediction
syn ) syn
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Results

No.l team No.2 team No.3 team
Task Ours
DBI*LWM MM AM R2A VPM
1: VGG on CIFAR-10 25.22 1.11 15.66 52.59 6.07 62.62
2 : NIN on SVHN 22.19 47.33 48.34 20.62 6.44 34.72
4 : AllConv on CINIC-10 31.79 43.22 47.22 57.81 15.42 52.80
5: AllConv on CINIC-10 15.92 3467 22.82 24.89 10.66 53.56
8 : VGG on F-MNIST 9.24 1.48 1.28 13.79 16.23 30.25
9 : NIN on CIFAR-10 25.86 20.78 19.25 11.30 2.28 33.51
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Takeaways

e \We have had some success empirically developing measures that explain ID
generalization.

e There is scope for predicting even better though.
e Limitation: Effectiveness of synthetic data generated by GANs is unknown.
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Part II: OOD Generalization



Why OOD?

e So far, we have seen measures that can predict in-distribution generalization
gap well.

e But, in-distribution test error often over-estimates real-world performance.

e Out-of-distribution error is a better proxy for real-world performance.

23



What's wrong with ID error? Example 1
A

Metal token placement revealed the hospital system which further informed disease statistics leading
to non-trivial accuracy on in-domain (seen hospitals).

Figure and finding: Zech, John R., et al. "Variable generalization performance of a deep learning model to detect pneumonia in
chest radiographs: a cross-sectional study." PLoS medicine 15.11 (2018): e1002683.

24



What's wrong with ID error? Example 2

COVID-19+ COVID-19-

COVID-19+

Oth percentile

;
YL S
O e
FRETIGN

SEA

99th percentile

E— |

Prediction of negative and positive based
on superficial/irrelevant features (image
edges, cardiac silhouette, diaphragm)

DeGrave AJ, Janizek JD, Lee Sl. Al for radiographic COVID-19

detection selects shortcuts over signal. Nature Machine Intelligence.

2021 Jul;3(7):610-9.
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lID is a myth.

Do ImageNet Classifiers Generalize to ImageNet?

Benjamin Recht* ! Rebecca Roelofs! Ludwig Schmidt' Vaishaal Shankar !

e Closely replicates the data generation of CIFAR-10 and Imagenet to create
new test sets.

e Yet, the performance dropped by 3% — 15% on CIFAR-10 and 11% — 14% on
ImageNet, which they attribute to distribution shift. (New test sets contains
more harder examples.)

e ltis hard to replicate iid even if we want to.
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What is OOD?

e There exists an underlying latent
natural distribution of inputs we
care about.

e Training distributions are a small
sample from the underlying natural
distribution.

e OOD evaluation concerns
evaluation on examples sampled
from the underlying natural
distribution instead of
in-distribution.

&

Training distributions

27



OOQOD Evaluation: Toy Example

e Different distribution of inputs are
defined by different positioning of
the object in the image.

e OOD Evaluation is about evaluating
on inputs with
arbitrarily positioned object.

28



OQOD Evaluation: Real Examples

e A medical diagnosis application trained on  Training data Real-world data
a handful of hospitals, but we wish to G ) °é“’
-7

generalize to any hospital. =
ID: training hospitals
OOQOD: any hospital

e A speech recognition application that is
trained on a handful of speakers should
generalize to any speaker (with any accent
or ethnicity) in the world.
ID: training speakers
OOQOD: any speaker

29



This part...

We will look at empirical measures that predict real-world performance given the

fitted function and in-domain distribution.

Fitted function \

Accuracy predictor

4

Training (In-)Distribution /

I

This was just training data before, now
relaxed as access to training distribution.

Real-world/OOD accuracy
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ID performance is a surprisingly strong metric!

CIFAR-10.2 test accuracy

[
o

[(e]
o

w U
o O O

Accuracy on the Line: On the Strong Correlation
Between Out-of-Distribution and In-Distribution Generalization

John Miller' Rohan Taori? Aditi Raghunathan? Shiori Sagawa? Pang Wei Koh? Vaishaal Shankar !
Percy Liang? Yair Carmon® Ludwig Schmidt*
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Linear Trend preserved over many factors

e The linear dependence is preserved

over.

o Model hyperparameters
o Training dataset size
o Training duration

[(e]
[6,]
A

(o]
o

CIFAR-10.2 test accuracy
w ()]
o o

[
o

Hyperparameter variation

Training duration variation

Training set size variation

= (Slope: 0.77, R2: 1.00) 7/

Linear Fit V4

Linear Fit Vg
95 {1 ™ (Slope: 0.77, R2: 1.00) ,/
4
4
80 F
4
60 - // ' Epoch 350
,/
p) Epoch 39
30
Epoch 1
10+
poch 0

95

80 1

60 -

301

10

Linear Fit Vd

== (Slope: 0.77, R2: 1.00) 7/

7’

80% train //

2% train

80% train

/
\2% train

80% train
2% train

10 30 60 8 95

CIFAR-10 test accuracy

- y=X ©

ResNet

10 30 60 80 95
CIFAR-10 test accuracy

® Random Features

10 30 60 8 95
CIFAR-10 test accuracy

Ridge Regression
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Interesting Behaviour in other settings

e Pre-training
o Zero-shot behaviour is better generalised than fine-tuned behaviour
o Pre-training helps improve generalisation to OOD characteristics if not present in training data

OOD datasets contain similar OOD datasets contain very different
viewpoints as ID viewpoints from 1D
CIFAR-10.2 FMoW-WILDS iwildCam-WILDS
95 55
0
- © 45
® 3
£85 9 351 i
(¥} o
8 S 55 5
o o
o 70 o £
~ 4 [a)
o g 15 @)
L 50 = ©
(@] [a]
o
o)
304 y : . - 5 - , y "
30 50 70 85 95 99 15 25 35 45 55 65 10 20 30 40 50 60 70
CIFAR-10 accuracy ID accuracy ID macro F1
@® From-scratch training ¥ ImageNet zero-shot ® From-scratch training ® From scratch A  Fine-tuned (WD=1e-3)

A ImageNet fine-tuning @ CLIP zero-shot A ImageNet fine-tuning @ Fine-tuned (WD=0)



Explaining Linear Trend with Gaussian Shift model

e C(Classic Generalisation Theory [Mansour et al. 2009] says
o For a model f trained on a distribution D, relate accuracy on D to accuracy on an OOD
distribution D’ as: [acc,(f) - acc,(f)| = d(D, D’)

Sketch of theoretical bounds

,?,_) 5~ Measure

> I bounds
c 90 ? Potential model .~ e B
S I .

o 72 ?/'f’_ .

o ?2 2 2 2? 5
g 70 T A7 7

g /-,'\7'

9 50 v ? -{f? N

= Ve 2 7 )

"JZ, R // ?2 2?2

2301% "o

S < 00D / ID discrepancy
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=

@)

[
o
N

10 30 50 70 90
In-distribution accuracy



Explaining Linear Trend with Gaussian Shift model

e [Miller et al.] show a stronger linear trend than this
o Consider D such that |y ~ N(k-y; 0*Iaxa),
o Consider D’ shiftedas p#'=a-p+p{A"and o' =7v-0
o Consider linear classifier z — sign(6' )

O
w

Theorem 1. In the setting described above where A is
independent of 0, let 6 € (0,1). With probability at least

o
1 — 9, we have g .
§80‘ @
<
_ a . B [2log2/s o :
& !(accp (60 ——<I>1ach9‘<— . Q »
( (6)) S (accp(6)) o g 3 |
j 50 80 95 99
ID Accuracy

vanishes in high-d

random noise on RY sphere

— — y=X
== Theo. trend

Logistic
Ridge

k-NN

Rand. Forest
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A Larger scale evaluation of Metric Correlation

Assaying Out-Of-Distribution
Generalization in Transfer Learning

Florian Wenzel* Andrea Dittadi’ > Peter Gehler'
Carl-Johann Simon-Gabriel Max Horn' Dominik Zietlow'
David Kernert! Chris Russell’ Thomas Brox'
Bernt Schiele' Bernhard Scholkopf' Francesco Locatello’

L AWS Tiibingen 2 Technical University of Denmark

They evaluate the ID-OOD accuracy observation more rigorously.
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Setup

e 10 tasks, 36 datasets, 172 (ID, OOD) pairs

e Models: models pretrained on ImageNet and finetuned on ID datasets

e Metrics: classification error, NLL, expected calibration error (ECE), adversarial
classification error.

e Metrics are evaluated on ID test set, held-out OOD test set, and corrupted
test set. (corruptions are 1 of 17 synthetic image distortions, for eg. low-pass
or high-pass filters)

e Best hyperparameters: number of training steps and learning rate,
augmentation strategy picked using held-out (ID-OOD) experiments.
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There is more to ID-OOD correlation

INCREASING LINE

VERTICAL LINE

HORIZONTAL LINE

NO CLEAR TREND

08 - >
o omainiNet clipart-vs-sketc sketch-vs-photo omainiNet infograph-vs-quickdraw erralncognita Loc46-vs-Loc
o D inN li ketch PACS sketch h o D inNet infograph ickd Te Incognita L 6 Loc38
o
5 0.6 ¢
8 o5 ° co ey o ()
a° 0.4 A ° L ." ° &*
8 % o %0 Y 4 :‘°
- L] @ - o .
@ . «® o g °Fo O °e ‘ “ i ..
0.0 - e® ®e O | ommec@® ‘. e ®™o
2 T T T T T T T T T T T T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

ID accuracy

ID accuracy

Under-specification
Many solutions satisfy
ID without improving
OOD.

ID accuracy

No gains on OOD

ID accuracy

No correlation between ID
and OOD.

But a trend of decreasing OOD with increasing ID accuracy is never observed.
(overfitting to spurious features not hurting robustness?)

So, a good strategy to improve OOD is to improve ID.
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Average correlation

Which metric is most informative?

=
o

o
~

o
N

=
o

Predictiveness of OOD error

Adjusted for ID error
mmm No E Yes

0.4
- l S| m I -I I I I I l I 0.0 .I
. . ' l

N v < N N \ < v & : <
Q}«o (ﬁ ((/(J 6\6’Q éﬁo ¢° . §V : Q}@ E Q . Q’Q, &%Q ?}ﬂo
A A b"’@. ,bb‘\. ) & S S P &z}(\. ,ob“
Q9 © 9 & o‘)& o&' Q 00

C (2 O X
Q ¢ &S
P NS
& @

e |D error is unsurprisingly the most predictive of the OOD error after heldout OOD error.
e Focus on green bars for how well the metric explains residuals from ID-OQOD linear fit.
e Accuracy and robustness of pretrained model translates to robustness of downstream model.
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Augmentations and architecture

Full dataset Few-shot-100 Few-shot-10

-0.22 | 0.71 0.58 2.10 pEESEN 1.33

= (3e-1) | (1e-3) (8e-2) [ (2e-4) N@EB) (82-3) Pgﬁormance improvement over not
using Aug. (p-value)

=) 199 213 1.34 | 1.88 2.12 CLo2

o4 (26-5) (2¢-5) (1e-3)  (3e-5) (2e-4) Black: insignificant.

\N
3

Data augmentations (RandAugment or AugMix) improve accuracy for any OOD
type (natural, corrupted or adversarial).

Architecture matters and vision transformers are most robust across the board.
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Models that have high “effective robustness”

e Models that lie above the linear fit are said to have “effective robustness”
e Exceedingly rare: zero-shot CLIP models, very few pre-trained Imagenet

e = 1]
S S0 |
~ b

Q i

O « e

< 45 - =

g Effective K i1k

= -Robustness i

= e

o 40 -

- .

— 4

+ : Ll ‘

R ,’ ----- Same Accuracy (y=x)

g ” R k |

QI 35 . Fit to Testbed Models

"‘5‘ Pa B New Model Accuracy

41_, ,, Accuracy Predicted from Limear Fit
pom | o -’ v’ + Testbed Models
QO 30 . . : :

40 45 50 55 60 6

In-Distribution Test Acc (%)
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How do we identify effective robustness?

e One approach: Explanation through spectral properties of both models and
OOD data influence the corresponding effective robustness

e Models that are robust to high-frequency data features generalise better

Models Out Of Line:
A Fourier Lens On Distribution Shift Robustness

Sara Fridovich-Keil'; Brian R. Bartoldson!, James Diffenderfer?,
Bhavya Kailkhura?, Peer-Timo Bremer!
fUC Berkeley, *Lawrence Livermore National Laboratory
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Effective Robustness correlates with Spectral Properties

e CLIP Models are uncharacteristically robust to semantic content-preserving
corruptions

e Higher frequency features ~ semantically meaningful content
e Pre-training and data augmentation encode more high-frequency features

Low Frequency Interpolation - semantic content-preserving corruption
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Takeaways

e Unlike for ID error, no one measure can explain OOD error.

e Deep networks are surprisingly resilient to overfitting. Not only do they avoid
overfitting to seen examples, but also avoid overfitting to seen training
distributions (in-distributions).

e Future work should focus on characterizing the distribution shift better.

CIFAR-10.1 Brightness Contrast Defocus Blur Pixelate Gaussian Noise ~ Impulse Noise

Figure 2: Power spectral densities for a selection of low (CIFAR-10.1, brightness, contrast), mid
(defocus blur, pixelate), and high (gaussian noise, impulse noise) frequency shifts w.r.t. CIFAR-10.



Part lll: Accuracy Prediction
on Target Domain



Beyond simple correlation...

e How do we look beyond metrics that simply correlate with OOD accuracy?
e Can we predict test error on any dataset with access to just unlabelled test data?
e Can we rank models on how well they would perform on a dataset with just

unlabelled data?

ASSESSING GENERALIZATION VIA DISAGREEMENT

Vaishnavh Nagarajan *
Google Research
vaishnavh@google.com

Yiding Jiang *
Carnegie Mellon University
ydjiang@cmu. edu

Carnegie Mellon University

Christina Baek, J. Zico Kolter

{kbaek, zkolter}@cs.cmu. edu

LEVERAGING UNLABELED DATA TO PREDICT
OUT-OF-DISTRIBUTION PERFORMANCE

Saurabh Garg*
Carnegie Mellon University
sgarg2@andrew.cmu.edu

Sivaraman Balakrishnan
Carnegie Mellon University
sbalakri@andrew.cmu.edu

Zachary C. Lipton
Carnegie Mellon University
zlipton@andrew.cmu.edu

Behnam Neyshabur
Google Research, Blueshift team
neyshabur@google.com

Hanie Sedghi
Google Research, Brain team
hsedghi@google.com

e By training separate classifiers and measuring disagreement on the same

unlabelled data
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Disagreement Tracks Generalisation Error

e Assume we have two hypotheses h, h’ from the same training procedure
(same optimiser, LR, data-batching, hardware) on a data distribution &

® TestErrgy(h) 2Eq[1[A(X)#Y]] and  Disg(h,h') 2 Eg [1[A(X) # K (X)]].

e Also easy to show |TestErr - Dis| < Calibration Error

o Issue: This correlation only exists for calibrated models, circular issue sometimes!
o Issue: Calibration degrades very fast under shift

AIDIff r?: 0.995 tau: 0.888 DiffData r?: 0.974 tau: 0.762 1.0 art 1.0 cartoon
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Issue: Calibration Degrades under Shift

Published in Transactions on Machine Learning Research (10/2022)

A Note on “Assessing Generalization of SGD via

- ”

Disagreement

Andreas Kirsch andreas.kirsch@cs.oz.ac.uk
Yarin Gal yarin.gal@cs.ox.ac.uk

OATML, Department of Computer Science
University of Ozford

e They show that Theorem 1 does not hold under distribution shift
e “we can only hope to trust model calibration for in-distribution data, while
under distribution shift, the calibration ought to deteriorate”
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Value

Issue: Calibration Degrades under Shift

0.04
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0.01
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We can’t successfully trust disagreement ~ test error under high

miscalibration
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(b) Ensemble without TOP (same underlying models)
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Takeaways

Predicting ID generalization gap is somewhat easier and measures based on
sharpness or evaluation using synthetic examples (GAN) perform reasonably
well. Although they are not perfect and can be improved further.

OOD generalization gap OTH is understandably multi-faceted and no one
measure can explain it well.

ID generalization is surprisingly well-correlated with OOD generalization.
Besides, negative effect of ID performance on OOD is never observed
(although could be possible).

Best strategy for improving real-world performance therefore is to continue to
improve |ID performance.

50



Takeaways (continued) ...

e Disagreement between calibrated ensemble of classifiers is a reliable
estimate for accuracy even on OOD datasets.

Future Work/Limitations

e Empirically found successful generalization measures need to be weaved in
to a convincing theory.

e Predicting OOD robustness has still a long way to go. ID is the best predictor
of OOD but far from ideal.
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Takeaways (continued) ...

Distribution shift or digression from training dataset needs to be better
understood. Currently, very crude characterization: natural, adversarial or
artificial shift.

Population with worst generalization is more important than expected
generalization that we looked at in this session. No existing problem
formulation captures that.

Creating calibrated ensembles for accuracy prediction on any unlabeled
dataset. Calibration breaks easier than accuracy on distribution shifts. How to
create calibrated ensembles? What is the uncertainty on accuracy estimate,
which could depend on the nature of distribution shift.
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Issues with Standard OOD Evaluation?

Dependence on specific OOD datasets and corruption choices

Standard OOD benchmarks may not translate to real-world deployment
Disentangling intrinsic model robustness vs specific training schedules
Spurious metrics for measurement - calibration? |D accuracy? empirical risk?
Hard to understand causes of either success or failure.
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This session

e Can we quantify real-world performance without OOD datasets?
e \What model properties inform distributional robustness?
e Dataset independent way of measuring OOD robustness.
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Large Scale Experiments on OOD

e Miller et al 2021

o Established a roughly linear trend b/w ID and OOD accuracy
o Justifications using Gaussian distribution shift model
o Does not work well with different covariance shifts, pre-training, adversar
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Assaying Out-Of-Distribution
Generalization in Transfer Learning



Models Out Of Line: A Fourier Lens On
Distribution Shift Robustness
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Models out of Line: A Fourier Lens

Other papers noticed a linear dependence b/w ID and OOD performance
Models out of this line have “remarkable” robustness, how do we identify?
How do spectral properties of models and OOD data affect robustness?
Perturb image’s Fourier amplitude while keeping phase constant - preserving
semantic information

Perturb image’s Fourier phase while keeping amplitude constant - destroying
semantic information

Measure - High Frequency Fraction (HFF), Consistent Distance (CF)

Three tunable "knobs" that are available to the neural network practitioner and
have been shown to impact OOD robustness: pruning [7], data augmentation
[15], and weight ensembling [34].

Main Takeaway: If model is robust to high frequency perturbation, then it is
robust to semantics similar to a human.
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Theoretical Metrics



Gannon et al
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Standard OOD Evaluation

Measure the strength of an algorithm through testing on datasets with distribution
shift.

e PACS, VLCS, DomainNet
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http://ai.bu.edu/M3SDA/
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Standard OOD Evaluation

Measure the strength of an algorithm through testing on datasets with distribution

shift.

PACS, VLCS, DomainNet

o WILDS
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https://wilds.stanford.edu/datasets/
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Standard OOD Evaluation

Measure the strength of an algorithm through testlng on datasets with distribution

Impulse Nmse Defocus Blur Frosted Glass Blur
shift. s

e PACS, VLCS, DomainNet
e WILDS
e Corruption datasets

Motion Blur Zoom Blur . Snow Frost Fog

https://github.com/hendrycks/robustness
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Standard OOD Evaluation

Measure the strength of an algorithm through testing on datasets with distribution

shif
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Corruption datasets
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Image source: GroupDRO slides at ICLR 2020



