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Classic theory
Generalization gap is bounded by some complexity measure of the fitted function 
with high probability.
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Generalization gap: 
test error - empirical train error

Training data size
C: Complexity measure
- A function of trained model and training 
data



Deep nets and classic theory

Classic complexity measures cannot explain why deep models generalize. 

Empirically explore complexity measures based on function and training data 
properties that explain the generalization gap in practice. 

C -> empirical_predictor(train_data, trained_model) 

Utility: 

● Motivates further theory.
● Improves ML application safety. 
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Classic evaluation

● Traditionally, performance evaluated on a held-out test split 
of train data, called in-distribution (ID) evaluation. 

● However, in-distribution test distribution need not represent 
real-world test distributions. 

● Moreover, in-distribution performance is often inflated. I.e. 
average performance in practice is often lower than 
in-domain. 

○ Ex: Dependence on metal token for predicting pneumonia 

  Train

Test
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OOD Evaluation: Beyond ID evaluation

We need an alternate evaluation:

● that informs how well a model performs in the real-world.
● that measures “true” progress, i.e. by not incentivising predictions due to 

incidental features. 

But how can we possibly quantify performance of a model in the arbitrary, creative 
and complex real-world? 😕
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Outline

- Part 1: Complexity measures for in-distribution generalization gap.
- Part 2: Complexity measures for out-of-distribution generalization gap.
- Part 3: Predicting accuracy on any dataset without labelled data.
- Takeaways and future work.
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Part I: In-domain Generalization 



This part…

We will look at empirical measures that predict real-world performance given the 
fitted function and in-domain distribution. 
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       Fitted function

         Training data

    Accuracy predictor   ID generalization gap



Survey and overview
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Summarizes and compares generalization measures existing to date on Image classification 
datasets: CIFAR-10, SVHN, using ConvNet architecture.



Setup
Trained models are generated by setting 7 common hyperparameters (batch size, 
dropout, lr, etc.) to 3 values (3^7 = 2187 models).
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nth Hyperparam

Let μ(θ) be the proposed complexity measure.
Let g(θ) denote the true generalization gap computed using held-out test set. 
Rank models (θ(1), θ(2),..., θ(n)) using μ or g and the ranked lists should be 
consistent for a good complexity measure μ. 



Setup (continued) … 

Metric: Granulated Kendall’s coefficient Ψ

Per hyperparameter ranking comparison to incentivise measures that can predict 
the effect of any hyperparameter. 
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Ranking distance
High if rank assigned by 
mu and g align.



Metric explained
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Model Index Dropout Learning 
rate

1 0.3 0.1

2 0.3 0.05

3 0.7 0.1

4 0.7 0.05

Avoids rewarding weaker measures.
For eg. if measure captures depth of 
network well, then can rank models 
overall well without capturing effect of 
other choices. 



Baseline complexity measures
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Oracle: True ranking of models + noise
Canonical: Simple ranking rules based on 
on common wisdom

Starting observation: existing vc dimension 
based complexity measures do not the explain 
generalization gap. 



Norm-based measures
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Frob distance: distance from initialization
Spectral: measure based on spectral norm of parameters
(both fail to predict) 
Distance from initialization does not matter. Param norm better

Pathnorm: a simple scale invariant complexity measure. (element-wise) square all parameters 
and accumulate sum of outputs (k=number of classes/outputs) for all-ones input.   



Flatness-based measures
PAC-Bayesian measures
If the prior distribution is P and posterior (after training) is Q on w. 
Then the expected generalization gap is bounded as below (McAllester, D. A. ‘99)
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(Neyshabur et.al. 2017)



Flatness-based measures (continued…)

Bound based on worst-case flatness (Keskar et.al. 2016).
The magnitude of     (number of parameters) length g.v. of variance σ2 is 
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where 𝛼 is to largest number such that



Sharpness-based measures (continued…)
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Sharpness magnitude 𝛼 is the most informative of generalization gap. (which is as good as it gets on 
these datasets when compared to oracle 0.02) 



A surprisingly simple baseline
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Use (conditional-)GANs to generate test data, and use it to predict generalization gap.



Algorithm
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Results
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Takeaways

● We have had some success empirically developing measures that explain ID 
generalization. 

● There is scope for predicting even better though.
● Limitation: Effectiveness of synthetic data generated by GANs is unknown. 
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Part II: OOD Generalization



Why OOD?

● So far, we have seen measures that can predict in-distribution generalization 
gap well.

● But, in-distribution test error often over-estimates real-world performance. 
● Out-of-distribution error is a better proxy for real-world performance. 
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Metal token placement revealed the hospital system which further informed disease statistics leading 
to non-trivial accuracy on in-domain (seen hospitals). 

Figure and finding: Zech, John R., et al. "Variable generalization performance of a deep learning model to detect pneumonia in 
chest radiographs: a cross-sectional study." PLoS medicine 15.11 (2018): e1002683. 24

What’s wrong with ID error? Example 1



Prediction of negative and positive based 
on superficial/irrelevant features (image 
edges, cardiac silhouette, diaphragm) 

DeGrave AJ, Janizek JD, Lee SI. AI for radiographic COVID-19 
detection selects shortcuts over signal. Nature Machine Intelligence. 
2021 Jul;3(7):610-9.

25

What’s wrong with ID error? Example 2



IID is a myth.

● Closely replicates the data generation of CIFAR-10 and Imagenet to create 
new test sets.

● Yet, the performance dropped by 3% – 15% on CIFAR-10 and 11% – 14% on 
ImageNet, which they attribute to distribution shift. (New test sets contains 
more harder examples.)

● It is hard to replicate iid even if we want to. 
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What is OOD?

● There exists an underlying latent 
natural distribution of inputs we 
care about. 

● Training distributions are a small 
sample from the underlying natural 
distribution. 

● OOD evaluation concerns 
evaluation on examples sampled 
from the underlying natural 
distribution instead of 
in-distribution.

 Natural distribution of inputs

 Training distributions
 O

OD
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OOD Evaluation: Toy Example

● Different distribution of inputs are 
defined by different positioning of 
the object in the image.

● OOD Evaluation is about evaluating 
on inputs with 
arbitrarily positioned object. 

 Natural distribution of inputs     
:= object appearing anywhere
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OOD Evaluation: Real Examples

● A medical diagnosis application trained on 
a handful of hospitals, but we wish to 
generalize to any hospital. 
ID: training hospitals
OOD: any hospital

● A speech recognition application that is 
trained on a handful of speakers should 
generalize to any speaker (with any accent 
or ethnicity) in the world. 
ID: training speakers
OOD: any speaker

Training data    Real-world data
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This part…

We will look at empirical measures that predict real-world performance given the 
fitted function and in-domain distribution. 
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       Fitted function

Training (In-)Distribution

    Accuracy predictor   Real-world/OOD accuracy

This was just training data before, now 
relaxed as access to training distribution.



ID performance is a surprisingly strong metric!
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Linear Trend preserved over many factors

● The linear dependence is preserved 
over:

○ Model hyperparameters
○ Training dataset size
○ Training duration
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Interesting Behaviour in other settings
● Pre-training

○ Zero-shot behaviour is better generalised than fine-tuned behaviour
○ Pre-training helps improve generalisation to OOD characteristics if not present in training data
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OOD datasets contain similar 
viewpoints as ID

OOD datasets contain very different 
viewpoints from ID



Explaining Linear Trend with Gaussian Shift model

● Classic Generalisation Theory [Mansour et al. 2009] says
○ For a model f trained on a distribution D, relate accuracy on D to accuracy on an OOD 

distribution D’ as: |accD(f) - accD’(f)| ≤ d(D, D’)
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Explaining Linear Trend with Gaussian Shift model
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● [Miller et al.] show a stronger linear trend than this
○ Consider D such that 
○ Consider D’ shifted as 
○ Consider linear classifier

random noise on Rd sphere

vanishes in high-d



A Larger scale evaluation of Metric Correlation
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They evaluate the ID-OOD accuracy observation more rigorously. 



Setup

● 10 tasks, 36 datasets, 172 (ID, OOD) pairs
● Models: models pretrained on ImageNet and finetuned on ID datasets
● Metrics: classification error, NLL, expected calibration error (ECE), adversarial 

classification error.
● Metrics are evaluated on ID test set, held-out OOD test set, and corrupted 

test set. (corruptions are 1 of 17 synthetic image distortions, for eg. low-pass 
or high-pass filters)

● Best hyperparameters: number of training steps and learning rate, 
augmentation strategy picked using held-out (ID-OOD) experiments. 
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There is more to ID-OOD correlation

But a trend of decreasing OOD with increasing ID accuracy is never observed. 
(overfitting to spurious features not hurting robustness?)

So, a good strategy to improve OOD is to improve ID. 
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Under-specification
Many solutions satisfy 
ID without improving 
OOD.

No gains on OOD No correlation between ID 
and OOD.



Which metric is most informative? 
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● ID error is unsurprisingly the most predictive of the OOD error after heldout OOD error. 
● Focus on green bars for how well the metric explains residuals from ID-OOD linear fit. 
● Accuracy and robustness of pretrained model translates to robustness of downstream model. 



Augmentations and architecture

Data augmentations (RandAugment or AugMix) improve accuracy for any OOD 
type (natural, corrupted or adversarial).

Architecture matters and vision transformers are most robust across the board. 
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Performance improvement over not 
using Aug. (p-value)
Black: insignificant.



Models that have high “effective robustness”

● Models that lie above the linear fit are said to have “effective robustness”
● Exceedingly rare: zero-shot CLIP models, very few pre-trained Imagenet 

models
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How do we identify effective robustness?

● One approach: Explanation through spectral properties of both models and 
OOD data influence the corresponding effective robustness

● Models that are robust to high-frequency data features generalise better
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Effective Robustness correlates with Spectral Properties
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Low Frequency Interpolation - semantic content-preserving corruption

High Frequency Interpolation - semantic content-destroying corruption

● CLIP Models are uncharacteristically robust to semantic content-preserving 
corruptions

● Higher frequency features ~ semantically meaningful content
● Pre-training and data augmentation encode more high-frequency features



Takeaways
● Unlike for ID error, no one measure can explain OOD error. 
● Deep networks are surprisingly resilient to overfitting. Not only do they avoid 

overfitting to seen examples, but also avoid overfitting to seen training 
distributions (in-distributions). 

● Future work should focus on characterizing the distribution shift better. 
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Part III: Accuracy Prediction 
on Target Domain



Beyond simple correlation… 
● How do we look beyond metrics that simply correlate with OOD accuracy?
● Can we predict test error on any dataset with access to just unlabelled test data?
● Can we rank models on how well they would perform on a dataset with just 

unlabelled data?
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● By training separate classifiers and measuring disagreement on the same 
unlabelled data



Disagreement Tracks Generalisation Error

● Assume we have two hypotheses h, h’ from the same training procedure 
(same optimiser, LR, data-batching, hardware) on a data distribution

●                                             and 
● Also easy to show |TestErr - Dis| < Calibration Error

○ Issue: This correlation only exists for calibrated models, circular issue sometimes!
○ Issue: Calibration degrades very fast under shift

47In-Distribution (ResNet18 on CIFAR100) Distribution Shift (PACS Dataset)



Issue: Calibration Degrades under Shift

● They show that Theorem 1 does not hold under distribution shift
● “we can only hope to trust model calibration for in-distribution data, while 

under distribution shift, the calibration ought to deteriorate”
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Issue: Calibration Degrades under Shift

● We can’t successfully trust disagreement ~ test error under high 
miscalibration
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Takeaways

● Predicting ID generalization gap is somewhat easier and measures based on 
sharpness or evaluation using synthetic examples (GAN) perform reasonably 
well. Although they are not perfect and can be improved further.

● OOD generalization gap OTH is understandably multi-faceted and no one 
measure can explain it well. 

● ID generalization is surprisingly well-correlated with OOD generalization. 
Besides, negative effect of ID performance on OOD is never observed 
(although could be possible). 

● Best strategy for improving real-world performance therefore is to continue to 
improve ID performance. 
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Takeaways (continued) …  

● Disagreement between calibrated ensemble of classifiers is a reliable 
estimate for accuracy even on OOD datasets. 

Future Work/Limitations

● Empirically found successful generalization measures need to be weaved in 
to a convincing theory. 

● Predicting OOD robustness has still a long way to go. ID is the best predictor 
of OOD but far from ideal.
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Takeaways (continued) …  

● Distribution shift or digression from training dataset needs to be better 
understood. Currently, very crude characterization: natural, adversarial or 
artificial shift. 

● Population with worst generalization is more important than expected 
generalization that we looked at in this session. No existing problem 
formulation captures that. 

● Creating calibrated ensembles for accuracy prediction on any unlabeled 
dataset. Calibration breaks easier than accuracy on distribution shifts. How to 
create calibrated ensembles? What is the uncertainty on accuracy estimate, 
which could depend on the nature of distribution shift. 
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Thanks!



Issues with Standard OOD Evaluation?

● Dependence on specific OOD datasets and corruption choices
● Standard OOD benchmarks may not translate to real-world deployment
● Disentangling intrinsic model robustness vs specific training schedules
● Spurious metrics for measurement - calibration? ID accuracy? empirical risk?
● Hard to understand causes of either success or failure.
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This session

● Can we quantify real-world performance without OOD datasets?
● What model properties inform distributional robustness? 
● Dataset independent way of measuring OOD robustness. 
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Large Scale Experiments on OOD

● Miller et al 2021
○ Established a roughly linear trend b/w ID and OOD accuracy
○ Justifications using Gaussian distribution shift model
○ Does not work well with different covariance shifts, pre-training, adversar
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Assaying Out-Of-Distribution 
Generalization in Transfer Learning
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Models Out Of Line: A Fourier Lens On 
Distribution Shift Robustness 
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Models out of Line: A Fourier Lens

● Other papers noticed a linear dependence b/w ID and OOD performance
● Models out of this line have “remarkable” robustness, how do we identify?
● How do spectral properties of models and OOD data affect robustness?
● Perturb image’s Fourier amplitude while keeping phase constant - preserving 

semantic information
● Perturb image’s Fourier phase while keeping amplitude constant - destroying 

semantic information
● Measure - High Frequency Fraction (HFF), Consistent Distance (CF)
● Three tunable "knobs" that are available to the neural network practitioner and 

have been shown to impact OOD robustness: pruning [7], data augmentation 
[15], and weight ensembling [34].

● Main Takeaway: If model is robust to high frequency perturbation, then it is 
robust to semantics similar to a human.
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Theoretical Metrics
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Gannon et al
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Standard OOD Evaluation

Measure the strength of an algorithm through testing on datasets with distribution 
shift. 

● PACS, VLCS, DomainNet 

http://ai.bu.edu/M3SDA/
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Standard OOD Evaluation

Measure the strength of an algorithm through testing on datasets with distribution 
shift. 

● PACS, VLCS, DomainNet 
● WILDS

https://wilds.stanford.edu/datasets/
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Standard OOD Evaluation

Measure the strength of an algorithm through testing on datasets with distribution 
shift. 

● PACS, VLCS, DomainNet 
● WILDS
● Corruption datasets

https://github.com/hendrycks/robustness 64



Standard OOD Evaluation

Measure the strength of an algorithm through testing on datasets with distribution 
shift. 

● PACS, VLCS, DomainNet 
● WILDS
● Corruption datasets
● Spurious correlations

      Image source: GroupDRO slides at ICLR 2020
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